
Deadlock Analysis with Fewer False Positives

Thread T1:

sync(G){
sync(L1){
sync(L2){}

}
};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

Thread T2:

sync(G){
sync(L2){
sync(L1){}

}
}

Thread T3:

sync(L1){
sync(L2){}

}

Lock(T1,G)
Lcck(T1,L1)
Lock(T1,L2)
...
Start(T1,T3)
Lock(T2,G)
Lock(T2,L2)
Lock(T2,L1)
...
Lock(T3,L1)
Lock(T3,L2)
...
Join(T1,T3)
Lock(T1,L2)
Lock(T1,L1)
...

Execute instrumented version
of program and extract execution trace
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Deadlock?
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Multi-threaded program

Program deadlocks  between T2 and T3
Algorithm builds lock graph from trace
Deadlock potentials show as cycles in graph
Cycle freedom is by far easier to test 

Old algorithm reports 4 deadlocks, 3 false 
New algorithm only reports 1 (the real one)
Hence algorithm reduces false positives
This means less time spent by programmer



Deadlock Analysis with Fewer False Positives

The Problem of Non-Determinism
Multithreaded software is non-deterministic.
Some executions may exhibit a bug, eg. a deadlock, 
while others may not. Standard testing may therefore 
not reveal the bug. 
The Solution of Runtime Analysis
Runtime analysis examines a single execution trace 
for the “footprints” of bugs; eg. cycles in a lock graph.
A bug usually leaves prints in most execution traces, 
even if the executions do not exhibit the bug.
Our Improved Runtime Analysis Algorithm
Standard runtime analysis of deadlocks yields false 
positives. New algorithm reduces number of false 
positives by using labeled lock graphs. 

Case Study results
K9 rover: Found one unexpected 
deadlock, confirmed one data race, 
and found all seeded deadlocks and 
data races.
DS1 Attitude Control System: Found 
two unexpected data races, and all 
seeded data races.



Explanation of Accomplishment
• POC: Klaus Havelund (ASE group, Code IC, havelund@email.arc.nasa.gov)
• Background: Concurrency-related errors in multi-threaded mission software often 

manifest themselves only by intermittent bugs and hence are difficult to find by testing.  
Runtime Analysis is a solution; it is a technique that analyzes the trace of a single 
execution of a program, inferring possible problems in other executions.  It scales well 
to large programs. The standard runtime analysis algorithm detects possible deadlocks. 
However, it suffers in that it reports many false positives.  This requires the user to 
investigate deadlocks that cannot actually appear, making the technique less usable.

• Accomplishment: We have developed an enhanced runtime analysis algorithm for 
deadlock detection that issues fewer false positives. It reduces the problem of finding 
deadlocks to finding a cycle in a labeled graph that describes the lock hierarchies 
appearing during execution. This algorithm, and a data race detection algorithm, have 
been implemented in the Java PathExplorer (JPaX) runtime verification tool. JPaX has 
been applied to two major case studies.  The K9 rover developed at Ames was analyzed 
after having been seeded with deadlocks.  All deadlocks were found.  An early version 
of the algorithm found an unexpected deadlock in the K9 rover.  JPaX has also been 
applied to the Deep-Space 1 attitude control system.  This system was cycle free, but 
two unexpected data races were identified.

• Future Plans: We are currently extending the capability of JPaX to be able to detect 
other kinds of concurrency errors. Currently we are implementing an algorithm for 
detecting higher level data races. Errors in the Remote Agent found by the POC were 
caused by such higher level data races. We are also extending the tool to find other 
forms of deadlocks, also referred to as communication deadlocks. JPaX furthermore 
includes a capability for checking conformance of an execution trace with a user 
provided requirements document. Future work includes improving this framework. 


